The key to weight loss maintenance: Exploring mechanisms of metabolic adaptation in a Göttingen Minipig model of obesity

Simon K. Bredum1,2, Berit Ø. Christoffersen1, Sofia Lundh1, Marina K. Gerstenberg1, Susanna Cirera3, Merete Fredholm4, Ana Domingos4

1Department of Large Animal Pharmacology, Global Drug Discovery, Novo Nordisk A/S, 2760 Måløv, Denmark
2Department of Pathology & Imaging, Global Discovery & Development Sciences, Novo Nordisk A/S, 2760 Måløv, Denmark
3Department of Translational Medicine, Global Translation, Novo Nordisk A/S, 2760 Måløv, Denmark
4Department of Animal Welfare & Disease Control, University of Copenhagen, 3000 Copenhagen, Denmark

Metabolic adaptation

- Metabolic adaptation is the body's response to changes in diet, exercise, or hormonal levels, aimed at maintaining energy balance. This can result in the body becoming more efficient at using fewer calories to perform the same tasks, which can make weight loss more challenging over time.

Overall aim

- Establish new knowledge on how metabolic adaptation is regulated in obesity, with the aim to propose novel targets for pharmacologically induced reversal of the metabolic adaptation.

Hypotheses

- Obese Göttingen Minipigs displaying similar metabolic changes as humans when subject to a weight loss
- The metabolic adaptation is associated with:
 1) differential gene expression
 2) differential regulation of neuroendocrine pathways
 3) differential levels of circulating biomarkers
- The metabolic adaptation is larger for a dietary restriction as compared to pharmacological treatment with a GLP-1 analogue

Methods

- 24 Female DIO Göttingen Minipigs, 1.5-year-old

 Control
 Vehicle
 GLP-1
 Vehicle
 Semaglutide
 Diet restriction

 Intervention

 4 weeks
 12 weeks

 10 weeks
 Treatment period

 DEXA and EE

 Study outline

Results

Food intake

“Semaglutide decreased food intake by 44%”

Body weight

“Weight-matching was successful, but all groups gained weight”

Body composition

“Semaglutide improved body composition”

Energy expenditure

“Diet restriction decreased energy expenditure – and more so than semaglutide despite same BW change”

Preliminary Conclusion

- The data indicates that metabolic adaptation was observed in the minipigs, with a greater magnitude seen in the diet restricted group compared to the semaglutide treated group.

What’s next?

- Metabolic chambers

Purpose

- DEG’s associated with MA

Method

- Bulk RNA-sequencing, scRNA-seq and ISH

Tissue/ Blood

- Changes in blood parameters

- Lipolysis capacity test, WB, NE content and inflammation

Adipose tissue adaptation

The PhD project is sponsored by Novo Nordisk A/S and partly funded by the Innovation Fund Denmark (IFD) under File No. 1044-000518.
Presented at the KU 250-year anniversary, 12th of May 2023, Frederiksberg campus, Frederiksberg, Denmark.